github link
Accession IconSRP136604

A network of noncoding regulatory RNAs acts in the mammalian brain I

Organism Icon Mus musculus
Sample Icon 96 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Noncoding RNAs (ncRNAs) play increasingly appreciated gene-regulatory roles. Here, we describe a regulatory network centered on four ncRNAs—a long ncRNA, a circular RNA, and two microRNAs—using gene editing in mice to probe the molecular consequences of disrupting key components of this network. The long ncRNA Cyrano uses an extensively paired site to miR-7 to trigger destruction of this microRNA. Cyrano-directed miR-7 degradation is much more efficient than previously described examples of target-directed microRNA degradation, which come primarily from studies of artificial and viral RNAs. By reducing miR-7 levels, Cyrano prevents repression of miR-7–targeted mRNAs and enables the accumulation of Cdr1as, a circular RNA known to regulate neuronal activity. Without Cyrano, excess miR-7 causes cytoplasmic destruction of Cdr1as, in part through enhanced slicing of Cdr1as by a second miRNA, miR-671. Thus, several types of ncRNAs can collaborate to establish a sophisticated regulatory network. Overall design: mRNA expression profiling by RNA-seq of 10 tissues from wild-type (WT) and Cyrano–/– (CyrKO) mice. This study consists of 96 polyA-selected unstranded Tru-seq libraries prepared from 4–6 biological replicates per genotype for each tissue.
PubMed ID
Total Samples
96
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Age
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...