github link
Accession IconSRP128660

An epigenetic mechanism for cavefish eye degeneration

Organism Icon Astyanax mexicanus
Sample Icon No Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Coding and non-coding mutations in DNA contribute significantly to phenotypic variability during evolution. However, less is known about the role of epigenetics in this process. Although previous studies have identified eye development genes associated with the loss of eyes phenotype in the Pachón blind cave morph of the Mexican tetra Astyanax mexicanus1-6, no inactivating mutations have been found in any of these genes2,3,7-10. Here we show that excess DNA methylation-based epigenetic silencing promotes eye degeneration in blind cave Astyanax mexicanus. By performing parallel analyses in Astyanax mexicanus cave and surface morphs and in the zebrafish Danio rerio, we have discovered that DNA methylation mediates eye-specific gene repression and globally regulates early eye development. The most significantly hypermethylated and down-regulated genes in the cave morph are also linked to human eye disorders, suggesting the function of these genes is conserved across the vertebrates. Our results show that changes in DNA methylation-based gene repression can serve as an important molecular mechanism generating phenotypic diversity during development and evolution. Overall design: RNA-seq and WGBS on isolated cave and surface morphs of Astyanax mexicanus
PubMed ID
Total Samples
4
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...