github link
Accession IconSRP127737

Widespread Changes in Transcriptome Profile of Human Mesenchymal Stem Cells Induced by Two-Dimensional (2D) Nanosilicates

Organism Icon Homo sapiens
Sample Icon 4 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
Two-dimensional (2D) nanomaterials, an ultrathin class of materials such as graphene, nanoclays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs), have emerged as a new generation of materials due to their unique properties relative to macroscale counterparts. However, little is known about the transcriptome dynamics following exposure to these nanomaterials. Here we investigate the interactions of 2D nanosilicates, a layered clay, with human mesenchymal stem cells (hMSCs) at the whole transcriptome level by high-throughput sequencing (RNA-seq). Analysis of cell-nanosilicate interactions by monitoring change in transcriptome profile uncovers key biophysical and biochemical cellular pathways triggered by nanosilicates. A widespread alteration of genes is observed due to nanosilicate exposure as more than 4,000 genes are differentially expressed. The change in mRNA expression levels reveal clathrin-mediated endocytosis of nanosilicates. Nanosilicate attachment to cell membrane and subsequent cellular internalization activate stress-responsive pathways such as mitogen activated protein kinase (MAPK), which subsequently directs hMSC differentiation towards osteogenic and chondrogenic lineages. This study provides transcriptomic insight on the role of surface-mediated cellular signaling triggered by nanomaterials and enables development of nanomaterials-based therapeutics for regenerative medicine. This approach in understanding nanomaterial-cell interactions, illustrates how change in transcriptomic profile can predict downstream effects following nanomaterial treatment.  Overall design: Examination of affect of 2D nanosilicates on hMSCs
PubMed ID
Total Samples
4
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Treatment
Subject
Processing Information
Additional Metadata
No rows found
Loading...