github link
Accession IconSRP126547

Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells

Organism Icon Homo sapiens
Sample Icon 12 Downloadable Samples
Technology Badge IconIon Torrent Proton

Submitter Supplied Information

Description
Tumor microenvironment plays a pivotal role in cancer progression; however, little is known regarding how differences in the microenvironment affect characteristics of cancer cells. Here, we investigated the effects of tumor microenvironment on cancer cells by using mouse tumor models. After 3 cycles of inoculation and extraction of human pancreatic cancer cells, including SUIT-2 and Panc-1 cells, from tumors, distinct cancer cell lines were established; 3P cells from the pancreas obtained using the orthotopic tumor model, and 3sc cells from subcutaneous tissue obtained using the subcutaneous tumor model. On cell re-inoculation of these cells, the 3sc cells and, more prominently, the 3P cells, exhibited higher tumorigenic activity than the parental cells. The 3P cells specifically exhibited low E-cadherin expression and high invasiveness, suggesting that they were endowed with the highest malignant characteristics. RNA-sequence analysis demonstrated that distinct signaling pathways were activated in each cell line and that the 3P cells acquired a cancer stem cell-like phenotype. Among cancer stem cell-related genes, those specifically expressed in the 3P cells, including NES, may be potential new targets for cancer therapy. The mechanisms underlying the development of highly malignant cancer cell lines were investigated. Individual clones within the parental cells varied in tumor-forming ability, indicating the presence of cellular heterogeneity. Moreover, the gene expression profile of each clone changed after orthotopic inoculation. The present study thus suggests that both selection and education processes are involved in the development of highly malignant cancer cells. Overall design: Expression of mRNA in the highly malignant sublines of SUIT-2 and Panc-1 cells xenografted into mice.
PubMed ID
Total Samples
12
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Subject
Processing Information
Additional Metadata
No rows found
Loading...