github link
Accession IconSRP119303

Endothelial Transcriptome Remodeling in a Mouse Model of Chronic Hypertension

Organism Icon Mus musculus
Sample Icon 104 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
Aims: Hypertension poses a significant challenge to vasculature homeostasis and stands as the most common cardiovascular disease in the world. Its effects are especially profound on vasculature-lining endothelial cells that are directly exposed to the effects of excess pressure. Here, we characterize the in vivo transcriptomic response of cardiac endothelial cells to hypertension using the spontaneous hypertension mouse model BPH/2J. Methods and results: Verification of defective endothelial function in the BPH/2J hypertensive mouse strain was followed by acute isolation of cardiac endothelial cells and transcriptional profiling using RNA sequencing. Gene profiles from normotensive BPN/3J mice were compared to hypertensive animals. We observed over 3000 transcriptional differences between groups including pathways consistent with the cardiac fibrosis found in hypertensive animals. Importantly, many of the fibrosis-linked genes also differ between juvenile pre-hypertensive and adult hypertensive BPH/2J mice, suggesting that these transcriptional differences are hypertension-related. We also show that blood pressure normalization with amlodipine resulted in a subset of genes reversing their expression pattern, supporting the hypertension-dependency of altered gene expression. Yet, other transcripts were recalcitrant to therapeutic intervention illuminating the possibility that hypertension may irreversibly alter some endothelial transcriptional patterns. Conclusions: Hypertension has a profound effect on both function and transcription of endothelial cells, the latter of which was only partially restored with normalization of blood pressure. This study represents one of the first to quantify how endothelial cells are reprogrammed at the molecular level in cardiovascular pathology and advances our understanding of the transcriptional events associated with endothelial dysfunction. Overall design: Endothelium from hypertensive mice were acutely extracted at two different ages (4 weeks and 22 weeks) and compared to endothelium from 22 week old normotensive mice.
PubMed ID
Total Samples
107
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Age
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...