github link
Accession IconSRP118836

NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells

Organism Icon Homo sapiens
Sample Icon 20 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
The development of the central nervous system (CNS) depends on the orchestrated generation of neurons and glia from neural stem cells (NSCs). Although NSCs generate both cell types, they are produced sequentially as neurons are born first and glia later. In humans, this timing is extremely protracted and the underlying mechanisms remain unknown. Deriving glial cells such as astrocytes from human pluripotent stem cells requires 3-6 months of differentiation, greatly impeding their use in human disease modeling and regenerative medicine. Here, we report that expression of the transcription factor nuclear factor IA (NFIA) is sufficient to trigger glial competency in highly neurogenic NSCs and enables the derivation of human astrocytes within 10-12 days. NFIA-induced astrocytes are functional and shown to promote synaptogenesis, protect neurons and generate calcium transients. The mechanism of NFIA-induced glial competency involves rapid but reversible chromatin remodeling, demethylation of the GFAP promoter and a striking effect on the cell cycle. NFIA titration and pharmacological studies indicate that acquisition of a glial-compatible G1 length is critical for achieving glial competency. Our results offer mechanistic insights into human glial competency and enable the routine use of astrocytes for studying human development and disease. Overall design: The timecourse consists of 4 timpoints. Day 0 (d0) represents neurogenic LTNSCs, day 3 (d3) represents overexpression of NFIA with doxycycline and cells were harvested in bulk, day 6 (d6) represents cells sorted for CD44 while NFIA is overexpressed, day 9 (d9) represents CD44+ sorted cells replated in culture without the addition of doxycyline to downregulate NFIA and day 12 (d12) represents the same cultures in d9, but with 3 additional days of no doxycycline treatment. Each timepoint has a minimum of 3 biological replicates. Rosette cells (H9 d0) and neurons (Dapt) were profiled as controls where rosettes were one sample and neurons were performed in duplicate.
PubMed ID
Total Samples
20
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...