github link
Accession IconSRP114712

Electrophilic stress induced by dimethyl itaconate regulates IkB-zeta-mediated inflammatory responses

Organism Icon Mus musculus
Sample Icon 8 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Interplay between metabolic state of the cell and its ability to undergo immunological activation has been recently recognized as a treasure chest of novel fundamental regulatory principles. Itaconate, and its membrane permeable derivative dimethyl itaconate (DI) were recently shown to selectively inhibit subset of cytokines during macrophage activation (e.g. Il1b, il6, Il12b but not TNF), yet the precise mechanism of this effect remained unclear. We find that selectivity of DI action stems from the inhibitory effects of electrophilic stress exerted by DI on IkB-zeta protein translation, leading to selective control of the secondary wave of Nfkb-signaling. Mechanistically, DI leads to glutathione depletion and subsequent activation of both Nrf2-dependent and Nrf2-independent stress responses. We find that IkB-zeta regulation is carried out in Nrf2-independent manner, and identify Atf3 as a key mediator of DI effects on IkB-zeta/IL6. This inhibitory effect is conserved across species and cell types, as evident from inhibition of IkB-zeta production in activating human monocytes and IL-17A stimulated keratinocytes of both human and mice. Finally, DI administration in vivo ameliorated IL17/IkB-zeta-driven skin pathology in the mouse model of psoriasis, highlighting therapeutic potential of this regulatory pathway. Overall design: Bone marrow-derived macrophages (BMDMs) from WT and Nrf2–/– mice were derived in 7 days in MCSF supplemented complete RPMI. Some samples cells were stimulated with 250 uM DimethylItaconate(DI) for 12 hours prior to collection for RNA-seq.
PubMed ID
Total Samples
8
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Treatment
Subject
Processing Information
Additional Metadata
No rows found
Loading...