github link
Accession IconSRP113410

Powerdress Mediated Histone Deacetylation Is Essential For Thermomorphogenesis In Arabidopsis Thaliana

Organism Icon Arabidopsis thaliana
Sample Icon No Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

We report POWERDRESS (PWR), a SANT domain containing protein known to facilitate the deacetylation of lysine rich residues of histone H3 by HISTONE DEACETYLASE 9 (HDA9), to play key role in temperature induced growth in Arabidopsis thaliana. Mutations in PWR showed severe attenuation in high temperature associated phenotypes viz., temperature-induced hypocotyl elongation, petiole elongation and early flowering. The study involved analysing the impact of the loss of PWR on the transcriptome in response to changes in ambient temperature. About one hundred 6 day old seedlings of wild type (Col-0) and pwr-2 mutant (in Col-0 background) were grown at 23 °C in short days (SD) photoperiod in growth chambers (GR-36, Percival Scientific, Canada). Half of the samples were then shifted to 27°C under short day photoperiod. Total RNA was extracted from whole seedlings grown at 23 °C and 27°C after two hours. Two biological replicates were used for Col-0 and pwr-2 samples. RNA was extracted using Isolate II RNA plant kit (Bioline Pty Ltd, Australia). RNA-Seq libraries were generated on Illumina HiSeqTM 2000 platform using paired-end sequencing of 90 bp in length at BGI-Shenzen (Beijing Genomics Institute). Gene expression analysis was performed using DESeq2 (v1.14.1) differential expression analysis pipeline. Overall design: Comparison of the transcriptome of 6 day old seedlings of Col-0 (WT) and pwr-2 mutants (in Col-0 background) grown at 23°C and shifted to 27°C for 2 hrs. Whole seedlings for RNA extraction were collected from 23°C and 27°C after two hours.
PubMed ID
Total Samples
Submitter’s Institution
No associated institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Processing Information
Additional Metadata
No rows found