github link
Accession IconSRP111562

DNA replication-coupled histone modification maintains Polycomb gene silencing in plants [RNA-seq]

Organism Icon Arabidopsis thaliana
Sample Icon No Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Propagation of patterns of gene expression through the cell cycle requires prompt restoration of epigenetic marks after the twofold dilution caused by DNA replication. Here, we show that the transcriptional repressive mark histone H3K27 trimethylation (H3K27me3) is restored in replicating plant cells through DNA replication-coupled modification of histone variant H3.1. Plants evolved a mechanism for efficient K27 trimethylation on H3.1, which is essential for inheritance of the silencing memory from mother to daughter cells. We illustrate how this mechanism establishes H3K27me3 mediated silencing during the developmental transition to flowering. Our study reveals transmission of H3K27me3 in plant cells through cell divisions, enabling H3K27me3 to function as an epigenetic mark. Overall design: Comparison of gene expression between Col and h3.1kd lines.
PubMed ID
Total Samples
6
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...