Description
A key function for RNA-binding proteins in orchestrating plant development and environmental responses is well established. However, the lack of a genome-wide view on their in vivo regulatory landscapes represents a gap in understanding the mode of action of plant RNA-binding proteins. Here, we conducted RNAseq to determine the genome-wide regulation repertoire of the circadian clock-regulated Arabidopsis thaliana glycine-rich RNA-binding protein AtGRP7. Overall design: AtGRP7 RNA-seq