github link
Accession IconSRP101460

Multicellular Transcriptional Analysis of Mammalian Heart Regeneration

Organism Icon Mus musculus
Sample Icon 127 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
The inability of the adult mammalian heart to regenerate following injury represents a major barrier in cardiovascular medicine. In contrast, the neonatal mammalian heart retains a transient capacity for regeneration, which is lost shortly after birth. Defining the molecular mechanisms that govern regenerative capacity in the neonatal period remains a central goal in cardiac biology. Here, we construct a transcriptional atlas of multiple cardiac cell populations, which enables comparative analyses of the regenerative (neonatal) versus non-regenerative (adult) state for the first time. This work provides a comprehensive transcriptional resource of multiple cardiac cell populations during cardiac development, repair and regeneration. Our findings define a transcriptional program underpinning the neonatal regenerative state and identifies an epigenetic barrier to re-induction of the regenerative program in adult cardiomyocytes. Overall design: Cardiomyocytes, fibroblasts, leukocytes and endothelial cells from infarcted and non-infarcted neonatal (P1) and adult (P56) hearts were isolated by enzymatic dissociation and FACS. RNA sequencing (RNA-seq) was performed on these cell populations to generate a transcriptomic atlas of the major cardiac cell populations during cardiac development, repair and regeneration. In addition, we surveyed the epigenetic landscape of cardiomyocytes during post-natal maturation by performing deep sequencing of accessible chromatin regions using the Assay for Transposase-Accessible Chromatin (ATAC-seq) from purified cardiomyocyte nuclei (P1, P14 and P56).
PubMed ID
Total Samples
128
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Treatment
Subject
Processing Information
Additional Metadata
No rows found
Loading...