Description
Purpose: High-altitude adaptive evolution of transcription, and the convergence and divergence of transcriptional alteration across species in response to high-altitude environments, is an important topic of broad interest to the general biology community. Our study aims to answer this important biological question. Methods: We generated deep transcriptome data of high- and low- altitude populations across four species: chicken, pig, goat and sheep, as well as high-altitude yak and low-altitude cattle, from six tissues (heart, kidney, liver, lung, skeletal muscle and spleen). Results: Here we provide a comprehensive comparative transcriptome landscape of expression and alternative splicing variation between low- and high-altitude populations across multiple species for distinct tissues. Conclusions: Our data serves a valuable resource for further study on adaptive transcription evolution and identification of candidate adaptive genes. Overall design: RNA-seq data from 138 samples derived from six tissues (heart, kidney, liver, lung, skeletal muscle and spleen) of three unrelated adult females for each of five animals (chicken, pig, cattle/yak, sheep and goat) from high- and low-altitude regions.