github link
Accession IconSRP094956

Identification of synaptic activity-regulated genes in primary mouse hippocampal neurons

Organism Icon Mus musculus
Sample Icon 4 Downloadable Samples
Technology Badge IconIllumina Genome Analyzer IIx

Submitter Supplied Information

Description
Synaptic activity drives changes in gene expression to promote long-lasting adaptations of neuronal structure and function. One example of such an adaptive response is the buildup of acquired neuroprotection, a synaptic activity- and gene transcription-mediated increase in the resistance of neurons against harmful conditions. A hallmark of acquired neuroprotection is the stabilization of mitochondrial structure and function. We therefore re-examined previously identified sets of synaptic activity-regulated genes to identify genes that are directly linked to mitochondrial function. In mouse and rat primary hippocampal cultures synaptic activity caused an upregulation of glycolytic genes and a concomitant downregulation of genes required for oxidative phosphorylation, mitochondrial biogenesis and maintenance. Changes in metabolic gene expression were induced by action potential bursting, but not by glutamate bath application activating extrasynaptic NMDA receptors. The specific pattern of gene expression changes suggested that synaptic activity promotes a shift of neuronal energy metabolism from oxidative phosphorylation toward aerobic glycolysis, also known as Warburg effect. The ability of neurons to upregulate glycolysis has, however, been debated. We therefore used FACS sorting to show that, in mixed neuron glia co-cultures, activity-dependent regulation of metabolic gene expression occurred in neurons. Changes in gene expression were accompanied by changes in the phosphorylation-dependent regulation of the key metabolic enzyme, pyruvate dehydrogenase. Finally, increased synaptic activity caused an increase in the ratio of L-lactate production to oxygen consumption in primary hippocampal cultures. Based on these data we suggest the existence of a synaptic activity-mediated neuronal Warburg effect that may promote mitochondrial homeostasis and neuroprotection. Overall design: We compared the mRNA expression profile of primary hippocampal neurons after 4h of basal synaptic activity vs. 4h of action potential bursting. Two independent experiments with independent cell preparations were performed.
PubMed ID
Total Samples
4
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...