github link
Accession IconSRP093436

Ribosomal proteins Rpl22 and Rpl22l1 control morphogenesis by regulating pre-mRNA splicing

Organism Icon Danio rerio
Sample Icon 2 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Most ribosomal proteins (RP) are regarded as essential, static components that only contribute to ribosome biogenesis and protein synthesis. However, emerging evidence suggests that RNA-binding RP are dynamic and can influence cellular processes by performing “extraribosomal”, regulatory functions involving binding to select, critical target mRNAs. We report here that the RP, Rpl22, and its highly homologous paralog, Rpl22-Like1 (Rpl22l1 or Like1), play critical, extraribosomal roles in embryogenesis. Indeed, they antagonistically control morphogenesis through developmentally-regulated localization to the nucleus where they modulate splicing of the pre-mRNA encoding smad2, an essential transcriptional effector of Nodal/TGF-ß signaling. During gastrulation, Rpl22 binds to intronic sequences of smad2 pre-mRNA and induces exon 9 skipping in cooperation with hnRNP-A1. This action is opposed by its paralog, Like1, which promotes exon 9 inclusion in the mature transcript. The nuclear roles of these RP in controlling morphogenesis represent a fundamentally different and paradigm-shifting mode of action for RP.
PubMed ID
No associated PubMed ID
Publication Title
No associated publication
Total Samples
No associated authors
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Processing Information
Additional Metadata
No rows found