github link
Accession IconSRP092362

DDX54 regulates transcriptome dynamics during DNA damage response [RNA-seq2]

Organism Icon Homo sapiens
Sample Icon 12 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
The cellular response to genotoxic stress is mediated by a well-characterized network of DNA surveillance pathways. The contribution of posttranscriptional gene regulatory networks to the DNA damage response (DDR) has not been extensively studied. Here, we systematically identified RNA-binding proteins differentially interacting with polyadenylated transcripts upon exposure of human breast carcinoma cells to ionizing irradiation (IR). Interestingly, more than 260 proteins including many nucleolar proteins showed increased binding to poly(A) RNA in IR-exposed cells. The functional analysis of DDX54, a candidate genotoxic stress responsive RNA helicase, revealed that this protein is an immediate-to-early DDR regulator required for the splicing efficacy of its target IR-induced pre-mRNAs. Upon IR exposure, DDX54 acts by increased interaction with a well defined class of pre-mRNAs which harbor introns with weak acceptor splice sites, as well as by protein-protein contacts within components of U2 snRNP and spliceosomal B complex, resulting in lower intron retention and higher processing rates of its target transcripts. Since DDX54 promotes survival after exposure to IR its expression and/or mutation rate may impact DDR-related pathologies. Our work indicates the relevance of many uncharacterized RBPs potentially involved in the DDR. Overall design: Gene expression profiling of MCF-7 cells upon DDX54 knockdown exposed to ionizing radiation
PubMed ID
Total Samples
12
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Subject
Time
Processing Information
Additional Metadata
No rows found
Loading...