github link
Accession IconSRP080991

A single-cell transcriptome atlas of the human pancreas [CEL-seq2]

Organism Icon Homo sapiens
Sample Icon 32 Downloadable Samples
Technology Badge IconNextSeq 500

Submitter Supplied Information

Description
To understand organ function it is important to have an inventory of the cell types present in the tissue and of the corresponding markers that identify them. This is a particularly challenging task for human tissues like the pancreas, since reliable markers are limited. Transcriptome-wide studies are typically done on pooled islets of Langerhans, which obscures contributions from rare cell types and/or potential subpopulations. To overcome this challenge, we developed an automated single-cell sequencing platform to sequence the transcriptome of thousands of single pancreatic cells from deceased organ donors, allowing in silico purification of all main pancreatic cell types. We identify cell type-specific transcription factors, a subpopulation of REG3A-positive acinar cells, and cell surface markers that allow sorting of live alpha and beta cells with high purity. This resource will be useful for developing a deeper understanding of pancreatic biology and pathophysiology of diabetes mellitus. Overall design: Islets of Langerhans were extracted from human cadaveric pancreata and kept in culture until single-cell dispersion and FACS sorting. Single-cell transcriptomics was performed on live cells from this mixture using an automated version of CEL-seq2 on live, FACS sorted cells. The StemID algorithm was used to identify clusters of cells corresponding to the major pancreatic cell types and to mine for novel cell type-specific genes as well as subpopulations within the known pancreatic cell types.
PubMed ID
Total Samples
32
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...