github link
Accession IconSRP079248

Regulated Capture of Vk Gene Topologically Associating Domains by Transcription Factories

Organism Icon Mus musculus
Sample Icon 75 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Antigen receptor gene recombination requires stochastic, monoallelic choice of a single variable gene in each lymphocyte progenitor. However, how this occurs remains unknown. Herein, we report that prior to V? to J? gene recombination, Ig? alleles reside within spatially different nuclear niches defined by elongating RNA Polymerase II (e-Pol II) and cyclin D3 complexes assembled on the nuclear matrix. Upon cell cycle exit, and cyclin D3 downregulation, only the V? allele in the more constrained e-Pol II niche was transcribed. Chromatin modeling and single cell RNA-seq revealed that the nuclear niche favored V? flanking CTCF sites, thus shaping the transcribed repertoire. Furthermore, multiple contiguous V?s oriented away from CTCF sites were preferentially transcribed. Cyclin D3 also repressed monoallelic protocadherin and olfactory genes. These studies of Ig? reveal a general mechanism by which regulated, stochastic chromatin loop capture by fixed e-Pol II complexes generates diversity and couples cell cycle exit to monogenic choice. Overall design: Bulk and Single Cell RNA-seq of B6 x CAST F1 hybrid small pre-B cells and bulk RNA-seq of Ccnd3-/- pro-B cells
PubMed ID
Total Samples
75
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...