github link
Accession IconSRP076222

Adaptation of the Kinome Promotes Resistance to BET Bromodomain Inhibitors in Ovarian Cancer

Organism Icon Homo sapiens
Sample Icon 28 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Small molecule BET bromodomain inhibitors (BETi) are actively being pursued in clinical trials for the treatment of a variety of cancers, however, the mechanisms of resistance to targeted BET protein inhibitors remain poorly understood. Using a novel mass spectrometry approach that globally measures kinase signaling at the proteomic level, we evaluated the response of the kinome to targeted BET inhibitor treatment in a panel of BRD4-dependent ovarian carcinoma (OC) cell lines. Despite initial inhibitory effects of BETi, OC cells acquired resistance following sustained treatment with the BETi, JQ1. Through application of Multiplexed Inhibitor Beads (MIBs) and mass spectrometry, we demonstrate that BETi resistance is mediated by adaptive kinome reprogramming, where activation of compensatory pro-survival kinase networks overcomes BET protein inhibition. Furthermore, drug combinations blocking these kinases may prevent or delay the development of drug resistance and enhance the efficacy of BET inhibitor therapy. Overall design: RNAseq was employed to identify changes in kinase RNA expression following short term (48h) or chronic (JQ1R) JQ1 treatment in three different ovarian cancer cell lines.
PubMed ID
Total Samples
Submitter’s Institution
No associated institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Cell line
Processing Information
Additional Metadata
No rows found