github link
Accession IconSRP076160

Gene expression analysis provides insight into the physiology of the important staple food crop cassava

Organism Icon Manihot esculenta
Sample Icon No Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Cassava (Manihot esculenta) is the food security crop that feeds approximately 800 million people worldwide. Although this crop displays high productivity under drought and poor soil conditions, it is susceptible to disease, postharvest deterioration and the roots contain low nutritional content. Cassava improvement programs are focused on addressing these constraints but are hindered by the crop's high heterozygosity, difficulty in synchronizing flowering, low seed production and a poor understanding of the physiology of this plant. Among the major food crops, cassava is unique in its ability to develop massive, underground storage roots. Despite the importance of these structures, their basic physiology remains largely unknown, especially the molecular genetic basis of storage root development. Similarly, in cassava, the favored target tissue for transgene integration and genome editing is a friable embryogenic callus (FEC). Little is known concerning gene expression in this tissue, or its relatedness to the somatic organized embryogenic structures (OES) from which it originates. Here, we provide molecular identities for eleven cassava tissue types through RNA sequencing and develop an open access, web-based interface for further interrogation of the data. Through this dataset, we report novel insight into the physiology of cassava and identify promoters able to drive specified tissue expression profiles. The information gained from this study is of value for both conventional and biotechnological improvement programs. Overall design: mRNA quantification in 11 tissue types of cassava and biological replicates for each tissue
PubMed ID
Total Samples
Submitter’s Institution
No associated institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Specimen part
Processing Information
Additional Metadata
No rows found