Description
The emergence and transmission of epigenetic signals across generations can quickly and efficiently alter gene expression in a population. We describe an epigenetic silencing signal whose initiation, transmission properties, genetic requirements and site of action are distinct from previously described epigenetic inheritance in C. elegans. A multi-copy transgene containing the region upstream of sid-1 silences sid-1 and upstream genes. Once established, silencing is stable in the absence of the array and can be maintained without selection for 13 generations. We show that the silenced state can be transmitted to progeny in the absence of the silenced locus, but that inherited silencing is dependent on the nuclear RNAi Argonaute HRDE-1, which stabilizes silencing siRNAs that target sid-1 exons. Notably, at each generation, the RNAi-dependent germline silenced sid-1 locus transitions to a chromatin-dependent silenced state in somatic cells, indicating that the mechanisms of transgenerational silencing in the soma and germline are distinct. Overall design: RNA-seq in wild-type (4 samples, 2 replicates per experiment) and Psid-1::gfp 4 samples, 2 replicates per experiment) worms