github link
Accession IconSRP072660

Distinct Combinatorial Events Generated by ECM Degradation Dictate Cell Behavior

Organism Icon Rattus norvegicus
Sample Icon 6 Downloadable Samples
Technology Badge IconNextSeq 500

Submitter Supplied Information

Description
It is well established that the expression profiles of multiple and possibly redundant matrix remodeling proteases (e.g. collagenases) strongly differ in health, disease and development. Although enzymatic redundancy might be inferred from their close similarity in structure, their in-vivo activity can lead to extremely diverse tissue-remodeling outcomes. We observed that proteolysis of collagen-rich natural extracellular matrix (ECM), generated uniquely by individual homologous proteases, leads to specific combinatorial events, which eventually affects overall ECM topography, visco-elastic properties and composition. We reveal striking differences in the movement and signaling patterns, morphology, and gene expression profiles of cells interacting with natural collagen-rich ECM degraded by different collagenases. Thus, unlike envisioned before matrix-remodeling systems are not redundant and give rise to precise ECM-cell crosstalk. As ECM proteolysis is an abundant biochemical process critical to tissue homoeostasis, these results improve our fundamental understanding of combinatorial factors dictating cell behavior. Overall design: We analyzed the transcriptional responses of fibroblasts interacting with MMP1 or MMP13-remodeled ECM 4 hours post seeding. Samples used: Fibroblasts interacting with MMP1-remodeled ECM; Fibroblasts interacting with MMP13-remodeled ECM; Control samples- Fibroblasts interacting with natural ECM. All samples were run in duplicates.
PubMed ID
Total Samples
6
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...