github link
Accession IconSRP069063

Transcriptomic profiling discloses molecular and cellular events related to neuronal differentiation in SH-SY5Y cells

Organism Icon Homo sapiens
Sample Icon 6 Downloadable Samples
Technology Badge IconIllumina HiSeq 1000

Submitter Supplied Information

Description
Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis to pinpoint pathways and cellular processes underlying neuronal differentiation of SH-SY5Y cells according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells outlined meaningful biological functions associated with changes in cell morphology including remodelling of plasma membrane and cytoskeleton, neuritogenesis. Seventy-three DEGs were assigned to Axonal Guidance Signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited the ability to elongate longer axonal process as assessed by the morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is necessary to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis. Overall design: Comparison of cell line SH-SY5Y differentiated and undifferentiated.
PubMed ID
Total Samples
6
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...