github link
Accession IconSRP067991

The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15

Organism Icon Mus musculus
Sample Icon 9 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
The inhibitor of DNA binding 2 (Id2) is essential for NK cell development with its canonical role in this pathway being to antagonize E-proteins, silencing E-box gene expression and subsequent commitment to the T and B cell lineages. However, how E-box genes prevent NK cell development and homeostasis remains enigmatic. Here we identify a key role for Id2 in regulating the threshold for IL-15 receptor signaling and homeostasis of NK cells by repressing multiple E-protein target genes including Socs3. Deletion of Id2 in mature NK cells was incompatible with their homeostasis due to impaired IL-15 receptor signaling. Id2-null NK cells displayed impaired IL-15 mediated JAK1/STAT5 phosphorylation, compromised metabolic function and enhanced apoptosis. Remarkably, Id2-null NK cell homeostasis could be fully rescued in vivo by IL-15 receptor stimulation and partially rescued by genetic ablation of Socs3. During normal NK cell maturation we observed an inverse correlation between the expression levels of E-protein target genes and Id2. These results shift the current paradigm on the role of Id2, indicating that it is not only required to antagonize E-proteins during NK cell commitment, but constantly required to titrate E-protein activity to regulate NK cell fitness and responsiveness to IL-15. Overall design: Transcriptional profiling of wild type and Id2-null natural killer (NK) cells using RNA sequencing
PubMed ID
Total Samples
9
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...