github link
Accession IconSRP064802

Genome-wide MAF1-dependent regulation of RNA polymerase III transcription [RNA-Seq]

Organism Icon Homo sapiens
Sample Icon 12 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
In higher eukaryotes, an important mechanism to tune translation in different tissues and conditions is mTORC1-dependent regulation of tRNAs transcription by RNA polymerase III (Pol III), as the relative amount of tRNAs tightly coordinates with the translational needs of the cell. mTORC1 contributes to regulate protein synthesis through its direct substrate MAF1, which functions as a negative regulator of Pol III transcription in response to stimuli such as serum starvation or rapamycin treatment. Here, we applied ChIP-seq to examine the Pol III occupancy profile in human fibroblasts and report evidence of a genome wide, MAF1-dependent coordinated response to favorable or stress growth conditions. Strikingly, while a set of genes is extremely responsive in terms of Pol III binding, other genes are mostly unperturbed, yet associated with transcriptionally engaged polymerases as revealed by nascent EU-labeled RNA-seq (neuRNA-seq). As shown by DamIP-seq, the responsiveness of a subset of genes is tightly connected to the rapid and transient interaction of MAF1 with DNA-bound Pol III. Overall design: We performed duplicate ChIP-seq experiments for the Rpc4 (POLR3D) subunit of RNA polymerase III in IMR90hTert cells grown in the presence of fetal bovine serum (FBS), serum starved (SS), serum starved and treated with insulin (SS+I), serum starved and treated with insulin and rapamycin (SS+R+I). Additional ChIP-seq profiles were generated in cells treated with MAF1 siRNAs and serum starved. MAF1 binding was addressed by DamIP-seq, using two replicates per clone of IMR90hTert cells expressing HA-tagged MAF1-DamK9A (2 different clones) or EGFP-DamK9A (2 different clones). To monitor dynamic transcription profiles we did neusRNA-seq in IMR90hTert cells EU-labeled or mock (DMSO)-labeled. For both DamIP-seq and neusRNA-seq, cells were either unperturbed or serum starved.
PubMed ID
Total Samples
12
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...