Description
Meiotic recombination is initiated by developmentally programmed DNA double-strand breaks (DSBs). In S. cerevisiae, the vast majority of DSBs occur in the nucleosome-depleted regions at gene promoters, where transcription factors (TFs) B296bind. It has been proposed that TF binding can stimulate DSB formation nearby by modulating local chromatin structure. However, a prior study in TF bas1 mutant suggested that the role of TF binding in determining break formation is complex. Here, we examined fine-scale DSB distributions in TF mutant (bas1? and ino4?) strains. In bas1? mutants, 239 out of the 2468 hotspots showed reduced DSB activity, whereas 87 hotspots showed increased DSB activity. Similarly, in ino4? mutant, 415 out of the 2468 hotspots showed reduced DSB activity, whereas 322 hotspots showed increased DSB activity. We also mapped Bas1 and Ino4 binding sites in meiosis and found that only a small portion of the affected hotspots contained TF binding sites. This indicates that TF can influence DSB distribution both directly and indirectly. Surprisingly, these DSB changes in TF mutants did not correlate with change in chromatin structure and histone H3K4me3 modification, suggesting that the role of TF on DSB distribution cannot be simply explained by affecting local chromatin status. Overall design: Six samples total: wild type, bas1 mutants, ino4 mutants; replicates for each genotype