github link
Accession IconSRP058375

Tumor exosome integrins determine organotropic metastasis

Organism Icon Homo sapiens
Sample Icon 8 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Stephen Paget first proposed, in 1889, that organ distribution of metastases is a non-random event, yet metastatic organotropism remains one of the greatest mysteries in cancer biology. Here, we demonstrate that exosomes released by lung-, liver- and brain-tropic tumor cells fuse preferentially with resident cells at their predicted destination, such as fibroblasts and epithelial cells in the lung, Kupffer cells in the liver, and endothelial cells in the brain. We found that exosome homing to organ-specific cell types prepares the pre-metastatic niche and that treatment with exosomes derived from lung tropic models can redirect metastasis to the lung. Proteomic profiling of exosomes revealed distinct integrin expression patterns associated with each organ-specific metastasis. Whereas exosomal integrins a6ß4 and a6ß1 were associated with lung metastasis, exosomal integrins avß5 and avß3 were linked with liver and brain metastases, respectively. Targeting a6ß4 and avß5 integrins decreased exosome uptake and metastasis in the lung and liver, respectively. Importantly, we demonstrate that exosome uptake activates a cell-specific subset of S100 family genes, known to support cell migration and niche formation. Finally, our clinical data indicate that integrin-expression profiles in circulating plasma exosomes from cancer patients could be used to predict organ-specific metastasis. Overall design: Education of human von Kupffer cells in vitro with human pancreatic cancer exosomes
PubMed ID
Total Samples
8
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...