Description
A comprehensive characterization of transcriptional diversity and heterogeneity of the human cortex is crucial to understand its functions in healthy and disease conditions. The diversity and cellular states of the densely packed cellular network in the cortex can be accurately captured by the transcriptional activities of individual cells. An overarching goal is to establish a high-resolution three dimensional map of all transcriptional activities in the human cortex. In this project we will generate 10,000 sets of full transcriptome data on single cells and nuclei from three areas (visual, temporal, prefrontal) of the human cortex. In addition, we will develop a novel RNA in situ sequencing method, and apply it to cortex sections to map and quantify at least 500 transcripts directly within the tissue at a spatial resolution of single cells. Using the spatial information of these ~500 transcripts as fingerprints, we will computationally map the additional... (for more see dbGaP study page.)