github link
Accession IconSRP052229

Improved transcription and translation with L-leucine stimulation of mTORC1

Organism Icon Homo sapiens
Sample Icon 42 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 was inhibited and overall translation was reduced in RBS cells. Treatment of RBS cells with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division. In this study, we use RBS as a model for mTOR inhibition and analyze transcription and translation with ribosome profiling to determine genome-wide effects of L-leucine. The translational efficiency of many genes is increased with Lleucine in RBS cells including genes involved in ribosome biogenesis, translation, and mitochondrial function. snoRNAs are strongly upregulated in RBS cells, but decreased with L-leucine. Imprinted genes, including H19 and GTL2, are differentially expressed in RBS cells consistent with contribution to mTORC1 control. This study reveals dramatic effects of L-leucine stimulation of mTORC1 and supports that ESCO2 function is required for normal gene expression and translation. Overall design: 42 samples of human fibroblast cell lines with various genotypes (wt, corrected, and esco2 mutants) are treated with l-leucine or d-leucine (control) for 3 or 24 hours. Biological replicates are present.
PubMed ID
Total Samples
Submitter’s Institution
No associated institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Processing Information
Additional Metadata
No rows found