github link
Accession IconSRP051705

Hepatitis C virus functionally sequesters miR-122 [RNA-Seq]

Organism Icon Homo sapiens
Sample Icon 8 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
Hepatitis C virus uniquely requires the liver specific microRNA-122 for replication, yet global effects on endogenous miRNA targets during infection are unexplored. Here, high-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) experiments of human Argonaute (Ago) during HCV infection showed robust Ago binding on the HCV 5’UTR, at known and predicted miR-122 sites. On the human transcriptome, we observed reduced Ago binding and functional mRNA de-repression of miR-122 targets during virus infection. This miR-122 “sponge” effect could be relieved and redirected to miR-15 targets by swapping the miRNA tropism of the virus. Single-cell expression data from reporters containing miR-122 sites showed significant de-repression during HCV infection depending on expression level and number of sites. We describe a quantitative mathematical model of HCV induced miR-122 sequestration and propose that such miR-122 inhibition by HCV RNA may result in global de-repression of host miR-122 targets, providing an environment fertile for the long-term oncogenic potential of HCV. Overall design: mRNA-seq libraries were generated from mock or J6/JFH1 Clone2 infected Huh7.5 cells. Cells were infected at an MOI of 1-2 and harvested at 72 hours and 96 hours post-infection for CLIP. Libraries were generated using Illumina Truseq technology.
PubMed ID
Total Samples
8
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...