github link
Accession IconSRP048700

Charaterization of genetic alterations and gene expression signatures found in erlotinib-resistant and erlotinib/crizotinib dual-resistant HCC827 subpopulations

Organism Icon Homo sapiens
Sample Icon 6 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
The non-small cell lung cancer (NSCLC) cell line HCC827 harbors an activating EGFR mutation (exon 19 deletion) that confers sensitivity to the FDA-approved EGFR inhibitor erlotinib. By applying the ClonTracer barcoding system, we were able to show the presence of pre-existing sub-populations in HCC827 that contribute to erlotinib resistance. Prior studies implicated that MET amplification confers resistance to erlotinib in this cell line. Therefore we examined the effects of the c-Met inhibitor crizotinib on the barcoded HCC827 population when treated either sequentially or simultaneously with both inhibitors. Despite the significant reduction in barcode complexity, the erlotinib/crizotinib combination treatment failed to eradicate all of the resistant clones implying the presence of an erlotinib/crizotinib dual resistant subpopulation. We performed transcriptome profiling (RNA-seq) to elucidate the potential resistance mechanisms of the dual resistant subpopulation in comparison to vehicle-treated or single agent erlotinib-resistant HCC827 cell populations as controls. Overall design: mRNA profiling of the subpopulations of human NSCLC cell line HCC827 that contribute to EGFR inhibitor erlotinib and MET inhibitor crizotinib resistance
PubMed ID
Total Samples
6
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...