github link
Accession IconSRP048518

Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes

Organism Icon Mus musculus
Sample Icon 1 Downloadable Sample
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
Neuronal activity causes the rapid expression of immediate early genes that are crucial for experience driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIb (Topo IIb), and knockdown of Topo IIb attenuates both DSB formation and early response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons. Overall design: Generation of sequencing data from ChIP-seq with antibodies against ?H2AX and Topo IIß after neuronal activity stimulation, and RNA-seq after etoposide treatment
PubMed ID
Total Samples
1
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...