github link
Accession IconSRP042020

The exon junction complex controls transposable element activity by ensuring the faithful splicing of the piwi transcript

Organism Icon Drosophila melanogaster
Sample Icon 8 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex which binds RNAs at a late stage of the splicing reaction and remains associated following export to the cytoplasm. This complex is involved in several cellular post-transcriptional processes including mRNA localization, translation and degradation. The EJC plays an additional role in the splicing of a subset of genes in Drosophila and in human cells but the underlying mechanism remains to be elucidated. Here, we have found a novel function for the EJC and its splicing subunit RnpS1 in preventing transposon accumulation in both Drosophila germline and surrounding follicular cells. This function is mediated specifically through the control of the splicing of the piwi transcript. In absence of RnpS1 one of the piwi intron is retained. This intron contains a weak 5’ splice site as well as degenerate transposon fragments, reminiscent of heterochromatic introns. In addition, we identified a small A/T rich region, which alters its polypyrimidine tract (PPT) and confers the RnpS1’s dependency. Finally, we showed that the removal of this intron by RnpS1 requires the initial splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of challenging introns following its initial deposition to adjacent exon junctions. Overall design: In total there are 4 different conditions. Comparisons were made between piwi mutant vs control piwi and rnps1 KD vs controls RnpS1
PubMed ID
Total Samples
8
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...