github link
Accession IconSRP041083

Programming and inheritance of parental DNA methylomes in mammals

Organism Icon Mus musculus
Sample Icon 3 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs. Overall design: The cross of two mouse strains was performed using DBA/2J as the paternal strain and C57BL/6J as the maternal strain. The hybrid embryos were collected at 2-cell, 4-cell, ICM, E6.5, E7.5 stages. Female and male E13.5 PGC samples (B6; 129S4-Pou5f1tm2Jae/J) were collected from timed mating of C57BL/6J female mice. MethylC-Seq: oocytes (C57BL/6J), sperm (DBA/2J), 2-cell embryos, 4-cell embryos, ICM, E6.5 embryos, E7.5 embryos, E13.5 female PGCs and E13.5 male PGCs. TAB-Seq: 2-cell embryos. fCAB-Seq: 2-cell embryos. RNA-Seq: oocytes (C57BL/6J).
PubMed ID
Total Samples
3
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...