github link
Accession IconSRP029742

Zea mays Transcriptome or Gene expression

Organism Icon Zea mays
Sample Icon 64 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Heterosis which is the improved vigor of F1-hybrids compared to their parents is widely exploited in maize (Zea mays L.) breeding to produce elite hybrids of superior yield. The transcriptomes of the maize inbred lines B73 and Mo17 and their reciprocal hybrid offspring were surveyed in the meristematic zone, the elongation zone, cortex and stele tissues of primary roots, prior to the developmental manifestation of heterosis. Single parent expression (SPE) is consistent with the dominance model for heterosis in that it denotes genes that are expressed in only one parent but in both reciprocal hybrids. In primary root tissues, between 1,027 (elongation zone) and 1,206 (stele) SPE patterns were observed. As a consequence, hybrids displayed in each tissue >400 active genes more than either parent. Analysis of tissue-specific SPE dynamics revealed that 1,233 of 2,233 SPE genes displayed SPE in all tissues in which they were expressed while 1,000 SPE genes displayed in at least one tissue a non-SPE pattern. In addition, 64% (17,351/ 27,164) of all expressed genes were assigned to the two subgenomes which are the result of an ancient genome duplication. By contrast, only between 18 and 25% of the SPE genes were assigned to a subgenome suggesting that a disproportionate number of SPE genes are evolutionary young and emerged after genome duplication. We hypothesize that this phenomenon is associated with human selection of favorable maize genotypes which might primarily affect younger genes rather than genes whose functions have been conserved for millions of years.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Processing Information
Additional Metadata
No rows found