github link
Accession IconSRP014655

Chromatin dynamics and genome-wide profiling of repetitive elements during early mammalian embryogenesis.

Organism Icon Mus musculus
Sample Icon 11 Downloadable Samples
Technology Badge IconIllumina Genome Analyzer IIx

Submitter Supplied Information

Description
We have used repetitive elements, including retrotransposons, as model loci to address how and when heterochromatin forms during development. High throughput RNA-sequencing using a Nano-CAGE protocol throughout early embryogenesis revealed that the expression of repetitive elements is abundant in embryonic cells, highly dynamic and stage-specific, with most repetitive elements becoming repressed before implantation. Furthermore, we show that Line L1 elements and IAP retrotransposons become reactivated from both parental genomes in mouse embryos after fertilisation, indicating an open chromatin configuration at the beginning of development. Our data show that the reprogramming process that follows fertilisation is accompanied by a robust transcriptional activation of retrotransposons and suggests that expression of repetitive elements is initially regulated through an RNA-dependent mechanism in mammals. Overall design: Genome Wide profiling of CAGE transcripts using Nano-CAGE and RNAseq in oocytes and 3 different stages of mouse pre-implantation development
PubMed ID
Total Samples
11
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Age
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...