github link
Accession IconSRP014211

Zea mays Epigenomics

Organism Icon Zea mays
Sample Icon No Downloadable Samples
Technology Badge IconIllumina Genome Analyzer

Submitter Supplied Information

Description
Methylation of chromosomal DNA in animals and plants is a fundamental mechanism of epigenetic regulation, and the maize genome, with its diverse complement of transposons and repeats, is a paradigm for transgenerational mechanisms such as paramutation and imprinting. We have determined the genome-wide cytosine methylation map of two maize inbred lines, B73 and Mo17, at high coverage and at single nucleotide resolution. Transposon methylation is highest in CG (65%) and CHG (50%) contexts (where H = A, C or T), while methylation in CHH (5%) contexts is guided by 24nt small interfering RNA (siRNA), and not by 21-22nt siRNA. We have found that CG (8%) methylation seems to deter insertion of Mutator transposons into exons, while CHH and CHG methylation at splice donor and acceptor sites strongly inhibits RNA splicing. Methylation differences between parents are inherited in recombinant inbred lines, but methylation switches, guided by siRNA, are widespread and persist for up to 8 generations. These differences influence splicing, and recurrent switching suggest that paramutation is much more common than previously supposed, and may contribute to heterosis. Our results provide a comprehensive high resolution resource for maize genome methylation, as well as a map of recurrent transgenerational epigenetic shifts (paramutation) in the two most commonly used inbred maize lines. Overall design: Genome-wide cytosine methylation map in 2 maize strains by bisulfite sequencing, and RNA and small RNA profiles in the same tissue using Illumina platform.
PubMed ID
Total Samples
9
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...