github link
Accession IconSRP013460

Global analysis of mRNA decay intermediates in Saccharomyces cerevisiae

Organism Icon Saccharomyces cerevisiae
Sample Icon No Downloadable Samples
Technology Badge IconIllumina HiSeq 2000, Illumina Genome Analyzer II

Submitter Supplied Information

Description
The general pathways of eukaryotic mRNA decay occur via deadenylation followed by 3’ to 5’ degradation or decapping, although some endonuclease sites have been identified in metazoan mRNAs. To determine the role of endonucleases in mRNA degradation in Saccharomyces cerevisiae, we mapped 5’ monophosphate ends on mRNAs in wild-type and dcp2? xrn1? yeast cells, wherein mRNA endonuclease cleavage products are stabilized. This led to three important observations. First, only few mRNAs that undergo low level endonucleotyic cleavage were observed suggesting that endonucleases are not a major contributor to yeast mRNA decay. Second, independent of known decapping enzymes, we observed low levels of 5’ monophosphates on some mRNAs suggesting that an unknown mechanism can generate 5'' exposed ends, although for all substrates tested Dcp2 was the primary decapping enzyme. Finally, we identified debranched lariat intermediates from intron-containing genes, demonstrating a significant discard pathway for mRNAs during the second step of pre-mRNA splicing, which is a potential new step to regulate gene expression. Overall design: 5'' monophosphorylated ends of poly(A) RNA from wild-type and dcp2D xrn1D strains were identified in duplicates and triplicates, respectively.
PubMed ID
Total Samples
6
Submitter’s Institution
No associated institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...