github link
Accession IconGSE85959

Basic Helix Loop Helix Enhancer 40 Null Mice Have Impaired Synaptic Plasticity, Enhanced Neuronal Excitability, and Decreased Expression of Insulin Degrading Enzyme

Organism Icon Mus musculus
Sample Icon 23 Downloadable Samples
Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Submitter Supplied Information

Description
Basic helix loop helix enhancer 40 (Bhlhe40) is a transcription factor expressed in rodent hippocampus, however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO) to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity. A whole genome expression array predicted that Bhlhe40 KO mice have up-regulated insulin-related pathways and down-regulated neuronal signaling-related pathways in the hippocampus. We validated that insulin degrading enzyme mRNA (Ide) and IDE protein are significantly downregulated in Bhlhe40 KO hippocampi. No significant difference was observed in hippocampal insulin levels. In hippocampal slices, we found CA1 neurons have increased miniature excitatory post-synaptic current (mEPSC) amplitude and decreased inhibitory post-synaptic current (IPSC) amplitude, indicating hyper-excitability in CA1 neurons in Bhlhe40 KO mice. At CA1 synapses, we found a reduction in long term potentiation (LTP) and long term depression (LTD), indicating an impairment in hippocampal synaptic plasticity in Bhlhe40 KO hippocampal slices. Bhlhe40 KO mice displayed no difference in seizure response to the convulsant kainic acid (KA) relative to controls. We found that while Bhlhe40 KO mice have decreased exploratory behavior they do not display alterations in spatial learning and memory. Together this suggests that Bhlhe40 plays a role in modulating neuronal excitability and synaptic plasticity ex vivo, however, Bhlhe40 alone does not play a significant role in seizure susceptibility and learning and memory in vivo. In addition, based on the reduction in IDE protein levels in these mice, there may be dysregulation of other known IDE substrates, namely insulin growth factor (Igf)-1, Igf-2, and Amyloid beta (A).
PubMed ID
Total Samples
23
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...