github link
Accession IconGSE85044

Specific myelomonocytic cells heavily infiltrate orthotopic lung tumors and display a hypoxia-driven micro-RNA expression signature that directs tumor-supporting functions and negatively impacts on clinical outcome

Organism Icon Mus musculus
Sample Icon 16 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Submitter Supplied Information

Description
Targeting immunomodulatory pathways has ushered a new era in lung cancer therapy. Further progress requires deeper insights into the nature and dynamics of immune cells in the lung cancer micro-environment. Dendritic cells (DCs) represent a heterogenous and highly plastic immune cell system with a central role in controlling immune responses. The intratumoral infiltration and activation status of DCs emerge as clinically relevant parameters in lung cancer. In this study we used an orthotopic preclinical model of lung cancer to interrogate the transcriptome of lung tumor-infiltrating DCs and extract novel biologically and clinically relevant information. Lung tumor-infiltrating leukocytes expressing generic DC markers were found to predominantly consist of CD11b+ cells which, compared to peritumoral lung DC counterparts, strongly over-express the T cell inhibitory molecule PD-L1 and acquire classic markers of tumor-supporting macrophages (TAM) on their surface. Transcriptome analysis of these CD11b+ tumor-infiltrating DCs (TIDCs) indicates impaired anti-tumoral immunogenicity, confirms the skewing towards TAM-related features, and indicates exposure to a hypoxic environment. In paralled, TIDCs display a specific micro-RNA signature dominated by the prototypical lung cancer oncomir miR-31. Hypoxia was found to drive intrinsic miR-31 expression in CD11b+DCs. Conditioned medium of mir-31-overexpressing CD11b+DCs induces pro-invasive lung cancer cell shape changes and is enriched with the pro-metastatic factors S100A8 and S100A9. Finally, analysis of TCGA datasets reveals that the TIDC-associated miRNA signature has a negative prognostic impact in non-small cell lung cancer. Together, these data suggest a novel mechanism through which lung cancer co-opts the plasticity of the DC system to support tumoral progression. Targeting immunomodulatory pathways has ushered a new era in lung cancer therapy. Further progress requires deeper insights into the nature and dynamics of immune cells in the lung cancer micro-environment. Dendritic cells (DCs) represent a heterogenous and highly plastic immune cell system with a central role in controlling immune responses. The intratumoral infiltration and activation status of DCs emerge as clinically relevant parameters in lung cancer. In this study we used an orthotopic preclinical model of lung cancer to interrogate the transcriptome of lung tumor-infiltrating DCs and extract novel biologically and clinically relevant information. Lung tumor-infiltrating leukocytes expressing generic DC markers were found to predominantly consist of CD11b+ cells which, compared to peritumoral lung DC counterparts, strongly over-express the T cell inhibitory molecule PD-L1 and acquire classic markers of tumor-supporting macrophages (TAM) on their surface. Transcriptome analysis of these CD11b+ tumor-infiltrating DCs (TIDCs) indicates impaired anti-tumoral immunogenicity, confirms the skewing towards TAM-related features, and indicates exposure to a hypoxic environment. In paralled, TIDCs display a specific micro-RNA signature dominated by the prototypical lung cancer oncomir miR-31. Hypoxia was found to drive intrinsic miR-31 expression in CD11b+DCs. Conditioned medium of mir-31-overexpressing CD11b+DCs induces pro-invasive lung cancer cell shape changes and is enriched with the pro-metastatic factors S100A8 and S100A9. Finally, analysis of TCGA datasets reveals that the TIDC-associated miRNA signature has a negative prognostic impact in non-small cell lung cancer. Together, these data suggest a novel mechanism through which lung cancer co-opts the plasticity of the DC system to support tumoral progression.
PubMed ID
Total Samples
16
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...