github link
Accession IconGSE8292

Comprehensive analysis of PPAR-dependent regulation of hepatic lipid metabolism by expression profiling - 3

Organism Icon Mus musculus
Sample Icon 16 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Submitter Supplied Information

PPAR is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPAR in hepatic lipid metabolism, many PPAR-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPAR-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPAR target genes, livers from several animal studies in which PPAR was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPAR-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPAR-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Since Pnpla2, Lipe, and Mgll contribute to hepatic triglyceride hydrolysis, gene regulation was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPAR agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPAR. Our study illustrates the power of transcriptional profiling to uncover novel PPAR-regulated genes and pathways in liver.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Specimen part
Processing Information
Additional Metadata
No rows found