github link
Accession IconGSE7743

Genome-wide gene expression analysis reveals a critical role for CRY1 in the Response of Arabidopsis to High Irradiance

Organism Icon Arabidopsis thaliana
Sample Icon 21 Downloadable Samples
Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Submitter Supplied Information

Description
Exposure to high irradiance results in dramatic changes in nuclear gene expression in plants. However, little is known about the mechanisms by which changes in irradiance are sensed and how the information is transduced to the nucleus to initiate the genetic response. To investigate whether the photoreceptors are involved in the response to high irradiance, we analyzed expression of ELIP1, ELIP2, APX2 and LHCB2.4 in the phyA, phyB, cry1 and cry2 photoreceptor mutants and hy5 and hyh transcription factor mutants. Following exposure to high intensity white light for 3 h (HL, 1000 micro mol quanta m-2 s-1) expression of ELIP1/2 and APX2 was strongly induced and LHCB2.4 expression repressed in wild type. The cry1 and hy5 mutants showed specific mis-regulation of ELIP1/2 and we show that the induction of ELIP1/2 expression is mediated via CRY1 in a blue light intensity-dependent manner. Furthermore, using the Affymetrix Arabidopsis 24K Gene-Chip we showed that 77 of the HL responsive genes are regulated via CRY1, and 26 of those genes were also HY5 dependent. As a consequence of the mis-regulation of these genes the cry1 mutant displayed a high irradiance-sensitive phenotype with significant photoinactivation of PSII, indicated by reduced Fv/Fm. Thus, we describe a novel function of CRY1 in mediating plant responses to high irradiances that is essential to the induction of photoprotective mechanisms. This indicates that high irradiance can be sensed in a chloroplast-independent manner by a cytosolic/nucleic component.
PubMed ID
Total Samples
21
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...