github link
Accession IconGSE75789

GBM miR338-p5

Organism Icon Homo sapiens
Sample Icon 6 Downloadable Samples
Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Submitter Supplied Information

Description
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors. Despite radical surgery and radiotherapy supported by chemotherapy, the disease still remains incurable with extremely low median survival rate of 12-15 months from the time of initial diagnosis. The main cause of treatment failure is considered to be the presence of cells that are resistant to such treatment. MicroRNAs (miRNAs) as regulators of gene expression are involved in the tumor pathogenesis, including GBM. MiR-338 is a brain specific miRNA which has been described to target pathways involved in proliferation and differentiation. In our study, miR-338-3p and -5p were differentially expressed in GBM tissue in comparison to non-tumor brain tissue. Overexpression of miR-338-3p with miRNA mimic did not show any changes in proliferation rates in GBM cell lines (A172, T98G, U87MG). On the other hand, pre-miR-338-5p notably decreased proliferation and caused cell cycle arrest. Since radiation is currently the main treatment modality in GBM, we combined overexpression of pre-miR-338-5p with radiation, which led to significantly decreased of cell proliferation, and increased cell cycle arrest and apoptosis in comparison to only irradiated cells. To better elucidate the mechanism of action, we performed gene expression profiling analysis that revealed targets of miR-338-5p being Ndfip1, Rheb, ppp2R5a. These genes have been described to be involved in DNA damage response, proliferation and cell cycle regulation. To our knowledge, this is the first study to describe role of miR-338-5p in GBM and its potential to improve sensitivity of GBM to radiation.
PubMed ID
Total Samples
6
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Processing Information
Additional Metadata
No rows found
Loading...