github link
Accession IconGSE7138

Induction of Dendritic Cell-like Phenotype in Macrophages during Foam Cell Formation

Organism Icon Homo sapiens
Sample Icon 22 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Submitter Supplied Information

Description
Foam cell formation from monocyte-derived macrophages is a hallmark of atheroscle-rotic lesions. Aspects of this process can be recapitulated in vitro by exposing MCSF-induced or platelet factor4 (CXCL4)-induced macrophages to oxidized (ox) or minimally modified (mm) low density lipoprotein (LDL). We measured gene expression in periph-eral blood mononuclear cells (PBMCs), monocytes and macrophages treated with CXCL1 (GRO-) or CCL2 (MCP-1) as well as foam cells induced by native LDL, mmLDL or oxLDL using 22 Affymetrix gene chips. Using an advanced Bayesian error-pooling approach and a heterogeneous error model (HEM) with a false discovery rate (FDR) <0.05, we found 5,303 of 22,215 probe sets to be significantly regulated in at least one of the conditions. Among a subset of 917 candidate genes that were preselected for their known biological functions in macrophage foamcell differentiation, we found that 290 genes met the above statistical criteria for significant differential expression patterns. While many expected genes were found to be upregulated by LDL and oxLDL, very few were induced by mmLDL. We also found induction of unexpected genes, most strikingly MHC-II and other dendritic cell markers such as CD11c. The gene expression patterns in response to oxLDL were similar in MCSF-induced and CXCL4-induced macrophages. Our findings suggest that LDL and oxLDL, but not mmLDL, induce a dendritic cell-like phenotype in macrophages, suggesting that these cells may be able to present antigens and support an immune response.
PubMed ID
Total Samples
22
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...