github link
Accession IconGSE68515

Hippocampal gene expression in aged and young HSD1 knockout mice

Organism Icon Mus musculus
Sample Icon 20 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Submitter Supplied Information

Mice deficient in the glucocorticoid-regenerating enzyme 11-HSD1 resist age-related spatial memory impairment. To investigate the mechanisms/pathways involved, we used microarrays to identify differentially expressed hippocampal genes that associate with cognitive ageing and 11-HSD1. Aged wild-type mice were separated into memory-impaired and unimpaired relative to young controls according to their performance in the Y-maze. All individual aged 11-HSD1-deficient mice showed intact spatial memory. The majority of differentially expressed hippocampal genes were increased with ageing (e.g. immune/inflammatory response genes) with no genotype differences. However, the neuronal-specific transcription factor, Npas4 and immediate early gene, Arc were reduced (relative to young) in the hippocampus of memory-impaired but not unimpaired aged wild-type or aged 11-HSD1-deficient mice. Quantitative RT-PCR and in situ hybridization confirmed reduced Npas4 and Arc mRNA expression in memory-impaired aged wild-type mice. These findings suggest that 11-HSD1 may contribute to the decline in Npas4 and Arc mRNA levels associated with memory impairment during ageing, and that decreased activity of synaptic plasticity pathways involving Npas4 and Arc may, in part, underlie the memory deficits seen in cognitively-impaired aged wild-type mice.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Processing Information
Additional Metadata
No rows found