github link
Accession IconGSE67523

Biological characterization of gene response to insulin-induced hypoglycemia in mouse retina

Organism Icon Mus musculus
Sample Icon 12 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Submitter Supplied Information

Glucose is the most important metabolic substrate of the retina and maintenance of nor-moglycemia is an essential challenge for diabetic patients. Glycemic excursions could lead to cardiovascular disease, nephropathy, neuropathy and retinopathy. We recently showed that hy-poglycemia induced retinal cell death in mouse via caspase 3 activation and glutathione (GSH) decrease. Ex vivo experiments in 661W photoreceptor cells confirmed the low-glucose induction of death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. We evaluate herein retinal gene expression 4 h and 48 h after insulin-induced hypoglycemia. Microarray analysis demonstrated clusters of genes whose expression is modified by hypoglycemia and we discuss the potential implication of those genes in retinal cell death. In addition, we highlight, by gene set enrichment analysis, three important pathways, including KEGG lysosomes, KEGG GSH metabolism and REACTOME apoptosis pathways. We tested the effect of recurrent hypoglycemia (three successive 5h periods of hypoglycemia separated by 48 h recovery) on retinal cell death. Interestingly, exposure to multiple hypoglycemic events prevents retinal cell death and GSH decrease, or adapts the retina to external stress by restoring GSH level comparable to control situation. We hypothesize that scavenger GSH is a key compound in this apoptotic process, and maintaining normal GSH level, as well as a strict glycemic control, may represent a therapeutic challenge in order to avoid side effects of diabetes, especially diabetic retinopathy.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Specimen part
Processing Information
Additional Metadata
No rows found