github link
Accession IconGSE66439

DAS graphene-based feeder-free culture system for human induced pluripotent stem cells

Organism Icon Homo sapiens
Sample Icon 4 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
Graphene has been selected as a candidate for synthetic feeder-free culture substrate guiding human/mouse multipotent stem cell lineage specification, and culturing pluripotent stem cells in a number of studies. However, conventional graphene is not an ideal biomaterial to maintain the pluripotency of human pluripotent stem cells (hPSC) including hESCs/hiPSCs due to its intrinsic hydrophobicity and relatively flat surface topography. Here, we applied morphology-controlled nanocrystalline graphene (NG) coating onto the culture substrates via diffusion-associated synthesis (DAS) process and cultivated hPSCs. It is found that enhanced hydrophilicity and controlled surface roughness of DAS-NG enabled tight focal adhesion of hPSCs onto the DAS-NG coated culture substrate and retained pluripotency for over 2 weeks. It is also found hPSCs grown on DAS-NG shared comparable global gene expression profile with hPSCs grown on mouse embryonic fibroblast (MEF). Importantly, the similarities in cell adhesion gene expression between hPSCs grown on DAS-NG and hPSCs on MEF suggest DAS-NG may provide comparable physical cues with MEF for sustaining pluripotency. Taken together, our findings show a new reliable method for culturing hPSCs in feeder-free condition using DAS-graphene.
PubMed ID
Total Samples
4
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Processing Information
Additional Metadata
No rows found
Loading...