github link
Accession IconGSE64128

Novel targets for the transcription factors MEF2 in MA-10 Leydig cells

Organism Icon Mus musculus
Sample Icon 6 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Submitter Supplied Information

Testosterone production by Leydig cells is a tightly regulated process requiring synchronized expression of several steroidogenic genes by numerous transcription factors. Myocyte enhancer factor 2 (MEF2) is a transcription factor recently identified in somatic cells of the male gonad. In other tissues, MEF2 is an essential regulator of organogenesis and cell differentiation. So far in the testis, MEF2 was found to regulate Leydig cell steroidogenesis by controlling Nr4a1 and Star gene expression. To expand our understanding of the role of MEF2 in Leydig cells, we performed microarray analyses of MA-10 Leydig cells depleted in MEF2 and results were analyzed using the Partek and IPA softwares. Several genes were differentially expressed in MEF2-depleted Leydig cells and 15 were validated by qPCR. A large number of these genes are known to be involved in fertility, gonad morphology and steroidogenesis and include Pde8a, Por, Ahr, Bmal1, Cyp1a1, Cyp1b1, Map2k1, Tsc22d3, Nr0b2, Smad4, and Star, which were all downregulated in the absence of MEF2. In silico analyses revealed the presence of MEF2 binding sites within the first 2 kb upstream the transcription start site of the Por, Bmal1, and Nr0b2 promoters, which suggests a direct regulation by MEF2. Using transient transfections in MA-10 Leydig cells, siRNA knockdown, and a MEF2-Engrailed dominant negative, we found that MEF2 activates the Por, Bmal1 and Nr0b2 promoters and that this requires an intact MEF2 element. Our results identify novel target genes for MEF2 and define MEF2 as an important regulator of Leydig cell function and male reproduction.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Specimen part
Cell line
Processing Information
Additional Metadata
No rows found