github link
Accession IconGSE6283

Specific transcriptional changes in human fetus with autosomal trisomies

Organism Icon Homo sapiens
Sample Icon 21 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
Background: Among full autosomal trisomies, only trisomies of chromosome 21 (Down syndrome, DS), 18 (Edward syndrome, ES) and 13 (Patau syndrome, PS) are compatible with postnatal survival. But the mechanisms, how a supernumerary chromosome disrupts the normal development and causes specific phenotypes, are still not fully explained. As an alternative to gene dosage effects due to the trisomic chromosome, a genome-wide transcriptional dysregulation has been postulated. The aim of this study was to define the transcriptional changes in trisomy 13, 18, and 21 during early fetal development in order to define whether (1) overexpression of genes of the trisomic chromosome contributes solely to the phenotype, if (2) all genes of the trisomic chromosome are upregulated similarly and whether the ratio of gene expression is in agreement with the gene dosis, (3) whether the different trisomies behave similarly in the characteristics of transcriptional dysregulation, and (4) whether transcriptional pattern can be potentially used in prenatal diagnosis. Methods: Using oligonucleotide microarrays (Affymetrix, U133 Plus 2.0), we analyzed whole genome expression profiles representing 54.000 probe sets in cultured amniocytes (AC) and chorion villus cells (CV) from pregnancies with a normal karyotype and with trisomies of human chromosomes 21, 18 and 13. Findings: We observed a low to moderate up-regulation for a subset of genes of the trisomic chromosomes. Transcriptional level of approximately 12-13 % of the supernumerary chromosome appeared similar to the respective chromosome pair in normal karyotypes. Expression values as well as the expression patterns of genes from the trisomic chromosome can distinguish the respective trisomic samples from euploid controls. A subset of chromosome 21-genes including the DSCR1-gene involved in fetal heart development was consistently up-regulated in different tissues (AC, CV) of trisomy 21 fetuses whereas only minor changes were found for genes of all other chromosomes. In contrast, in trisomy 13 and trisomy 18 vigorous downstream transcriptional changes were found. Interpretation: Global transcriptome analysis for autosomal trisomies 13, 18, and 21 supported a combination of the two major hypotheses. As several transcriptional pathways are altered, complex regulatory mechanisms are involved in the pathogenesis of autosomal trisomies. A genome-wide transcriptional dysregulation was predominantly observed in trisomies 13 and 18, whereas a more to chromosome 21 restricted expression alteration was found in trisomy 21.
PubMed ID
Total Samples
21
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Age
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...