github link
Accession IconGSE62821

EIF4E AND EIF4GI HAVE DISTINCT AND DIFFERENTIAL IMPRINTS ON MULTIPLE MYELOMA'S PROTEOME AND SIGNALING

Organism Icon Homo sapiens
Sample Icon 6 Downloadable Samples
Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Submitter Supplied Information

Description
Accumulating data indicate translation plays a role in cancer biology, particularly its rate limiting stage of initiation. Despite this evolving recognition, the function and importance of specific translation initiation factors is unresolved. The eukaryotic translation initiation complex eIF4F consists of eIF4E and eIF4G at a 1:1 ratio. Although it is expected that they display interdependent functions, several publications suggest independent mechanisms. This study is the first to directly assess the relative contribution of eIF4F components to the expressed cellular proteome, transcription factors, microRNAs, and phenotype in a malignancy known for extensive protein synthesis- multiple myeloma (MM). Previously, we have shown that eIF4E/eIF4GI attenuation (siRNA/ Avastin) deleteriously affected MM cells' fate and reduced levels of eIF4E/eIF4GI established targets. Here, we demonstrated that eIF4E/eIF4GI indeed have individual influences on cell proteome. We used an objective, high throughput assay of mRNA microarrays to examine the significance of eIF4E/eIF4GI silencing to several cellular facets such as transcription factors, microRNAs and phenotype. We showed different imprints for eIF4E and eIF4GI in all assayed aspects. These results promote our understanding of the relative contribution and importance of eIF4E and eIF4GI to the malignant phenotype and shed light on their function in eIF4F translation initiation complex.
PubMed ID
Total Samples
6
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Treatment
Processing Information
Additional Metadata
No rows found
Loading...