github link
Accession IconGSE62648

Gene expression profiles in dorsal skin of hairless mice orally administrated collagen hydrolysate for 1 week

Organism Icon Mus musculus
Sample Icon 8 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Submitter Supplied Information

Description
Dietary collagen hydrolysate has been conjectured to improve skin barrier function. To investigate the effect of long-term collagen hydrolysate administration on the skin, we evaluated stratum corneum water content and skin elasticity in intrinsic aged mice. Female 9-week-old hairless mice were fed a control diet, or a collagen hydrolysate-containing diet, for 12 weeks. The stratum corneum water content and skin elasticity were sequentially decreased by chronological aging in control mice. Intake of collagen hydrolysate significantly suppressed such changes. Moreover, we comprehensively analyzed gene expression in the skin of mouse, which had been administered collagen hydrolysate, using DNA microarray. Twelve weeks after start of collagen intake, no significant differences appeared in gene expression profile compared to that of control group. However, 1 week after administration, 135 genes were up-regulated and 448 genes were down-regulated in collagen group compared to control group. It is indicate that gene changes preceded changes of barrier function and elasticity. We focused on several genes correlated with functional changes in the skin. Gene Ontology terms, especially related to epidermal cell development, were signicantly enriched in up-regulated genes. These skin function-related genes had properties that facilitate epidermal production and differentiation and suppress dermal degradation. Thus, dietary collagen hydrolysate induced positive gene changes. In conclusion, our results suggest that alteration of gene expression at early stages after collagen administration affect skin barrier function and mechanical properties. Long-term oral intake of collagen hydrolysate improves skin dysfunction by regulating genes related to production and maintenance of the skin tissue.
PubMed ID
Total Samples
8
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Age
Specimen part
Treatment
Processing Information
Additional Metadata
No rows found
Loading...